Future Visions of X-ray and Gamma Ray Astronomy

Nicholas White

NASA Goddard Space Flight Center

To the Edge of Gravity, Space, and Time . . .

Grand Challenge From the NASA Administrator

"Can you imagine what a stellar black hole would actually look like if you were poised a few thousand kilometers above it?"

"What a legacy that would be for humanity—looking at the event horizon of a black hole!"

"It's time to bring science fiction to reality!"

Dan Goldin

Fermilab Inner Space-Outer Space Conference May 28, 1999

MAXIM: MicroArcsecond X-ray Imaging Mission

Take direct image of a black hole event horizon

- o Ultimate journey to visit a black hole
- o Fundamental importance to physics
- o Captures the imagination

Requires 0.1-1 marc second imaging

X-ray interferometry is the best approach

- o Close to event horizon, energy is emitted in X-rays
- o Baseline of 20 m at 1 Å for 1 marc second
- o 1-10 million times higher resolution than Chandra!

The Eye of the Beast!

Simulation showing the distortions of space-time Predicted by General Relativity

What we see will depend on black hole spin and viewing angle

o Black Holes represent an extreme, where:

- Space and time cease to exist?
- The laws of physics break down?
- The strong gravity limit of GR
- A place where we can test the laws of physics?

Gravity Reigns Supreme

o Image a black hole and we may see:

- The shadow of the event horizon
- The final plunge of material towards the event horizon
- The acceleration zone of cosmic jets
- Energy release in an accretion disk
- Perhaps exotic phenomena. . .

o This will push us to the limits of our technology

— 1-10 million times better than current capability!

Take a step-by-step approach

Outline

Two themes to the presentation

o Image a Black Hole

- How can it be done?
- Outline a Roadmap to do it
- Discuss some of the science possibilities along the way

o High Energy Cosmology

- Large scale structure in the Universe
- The nature of dark matter
- Missing baryon problem
- Observing the first black holes and starbursts
- Nucleosynthesis and the creation of the elements

The Excitement of Chandra!

Cas A SNR

G21.5-0.9 SNR in Sct

Crab SNR

PSR 0540-69 Pulsar/SNR in Dor

E0102-72 SNR in Tuc

Dor Eta Carina
Credit: Chandra X-ray Observatory

Power of Angular Resolution: Visiting Capella

Credit: Webster Cash

Black Hole Parameters

o Black Holes have three parameters:

- Mass, spin, and charge
- Only mass and spin are observable

o Radius of event horizon depends on spin

Maximally rotating hole has a factor 2 smaller radius

o Mass can be inferred

- Dynamics (HST)
- Observe reverberation effects from flares

o Spin can also be inferred

- X-ray Iron K line
- Spectra

Which are the Best Black Hole Targets?

- o AGN in nearby galaxies: (a few to 17 Mpc)
 more certain, larger masses, larger angular sizes (2–6 ms)
 but
 usually weak X-ray sources (< 0.1–3) * 10⁻¹² ergs cm⁻² s⁻¹
- o Nearby AGN: (20 150 Mpc)
 less certain, smaller masses, smaller angular sizes (~ 0.1–0.2 ms)
 but
 "strong" X-ray sources (20–100 * 10⁻¹² ergs cm⁻² s⁻¹)
- o Galactic Center
 - $-2.6^{\circ} 10^{6} \,\mathrm{M}_{\odot}$, 6.5 to 13 ms
 - Flux uncertain 14 10⁻¹² ergs cm⁻² s⁻¹
- o Galactic black holes are too small (~100 pico-arc sec)

Need Chandra and Constellation-X to demonstrate feasibility, identify best targets, and optimize MAXIM parameters.

Search for New Physics: Journey to a Black Hole

1990-1999 Do black holes exist? 2000-2010 Where are They? 2007-2020 How do they evolve? 2015-2025 How do they work?

Explore All Options

ASCA ROSAT HST CGRO RXTE Black Hole Survey

Chandra
XMM
Astro-E
INTEGRAL
GLAST
EXIST

Black Hole Anatomy

Constellation-X
LISA
GLAST
EXIST
Generation-X

Take a Direct Image

MAXIM ARISE

Where are they?: X-ray Surveys

Thirty-five years after discovery of the Cosmic X-ray Background, ROSAT has resolved into discrete sources $\sim 80\%$ of the background at 1 keV

Constellation-X will be able to take detailed high resolution spectra for all of the sources pictured here.

- o ROSAT Deep Field was (up until the launch of Chandra) our deepest look at the X-ray sky
- o Optical identification programs reveal that most are AGN at a mean redshift of 1.5
 - Reaching out to redshifts as high as 4
 - All these sources are black holes!
- o ASCA and BeppoSAX show evidence for absorbed population of AGN

Up to one million super massive black holes (AGN) will be discovered by Chandra and XMM

Gamma-ray Large Area Space Telescope

A new mission to study high energy cosmic gamma rays in the energy range 20 MeV -> 300 GeV

Capabilities:

- o Huge FOV (~20% of sky)
- o Broadband (4 decades in energy, including unexplored region > 10 GeV)
- o Unprecedented PSF for gamma rays (factor > 3 better than EGRET)
- o Large effective area (factor > 4 better than EGRET)
- o Results in factor > 30-100 improvement in sensitivity
- o No expendables: long mission without degradation
- o Launch in 2005

Large overlap with ground-based experiments (see Topic III talk by Vassiliev), with comparable sensitivity and complementary capabilities.

GLAST draws the interest of both the HEP and HEA communities.

What GLAST will do

- o Solve the current unidentified source problem—localization to arcmin scale
- o AGN—high latitude point source sensitivity ($<4 \times 10^{-9}$ cm⁻² s⁻¹) implies thousands of blazars will be detected and studied
- o Deep full-sky surveys
- o Test origin of extragalactic diffuse as unresolved sources
- o Probe via spectral cut-off optical-UV EBL in era of galaxy formation
- o Galactic particle dark matter searches
- o SNRs and cosmic ray acceleration—resolve shock acceleration region spatially and spectrally
- o High energy behavior of gamma-ray bursts
- o Pulsars—population studies, test acceleration models via spectral roll-offs

Expect GLAST era to stimulate broad community interest in gamma-ray data

GLAST and Blazars

- o Statistically accurate calculation of blazar contribution to the high energy diffuse extragalactic background
- o Constrain jet acceleration and emission models
- o Multi-wavelength monitoring of blazars
- o Measure spectral cut off with distance for a large sample of sources to redshift z > 4

Attenuation of AGN flux at high energy due to interactions with optical-UV

extragalactic background light

Beyond GLAST

GLAST represents a very large jump in capabilities in a relatively unexplored window, so it is difficult to guess what questions will be interesting next. (Hopefully NOT what we are thinking now.)

What GLAST won't do

- o Polarization measurements (not excluded, but difficult)
- o Image an AGN in gamma rays

Great leaps in angular resolution and area are likely to be necessary, even if not for a survey instrument (i.e., small FOV may be OK).

There are no obvious breakthrough technologies on the horizon.

An opportunity for new ideas!

Obscuration of AGN

Increasing evidence that there is a large population of highly absorbed AGN that may be responsible for the X-ray background

AGN viewed edge-on through the optically thick torus Only visible above 10 keV where current missions like Chandra have poor sensitivity

Swift and then EXIST will provide first sensitive surveys of the 10-500 keV band

Constellation-X will use multi-layer coatings on focusing optics to increase sensitivity at 40 keV by >100 over RXTE

EXIST

All Sky Imaging Deep Hard X-ray Survey

o Science:

- All-sky survey of obscured black holes in AGN
- Gamma-Ray Bursts out to z ~ 30
- Soft Gamma-Ray repeaters in Local Group
- Black Hole X-ray transients in the galaxy
- SN rate in Galaxy

o Mission:

- 8 coded aperture CZT telescopes (each 40deg FOV; 1 m²)
- International Space Station attached payload
- ~ 0.05 mCrab to $\sim 10-100$ keV;
 - ~ 0.5 mCrab to 600 keV
- All-sky imaging each 90 min orbit
- 5' resolution; ~ 10 "-1' positions
- Energy resolution $E/DE \sim 30-100$

Energetic X-ray Imaging Survey Telescope (EXIST) on ISS

Conceptual Layout of EXIST on ISS Integrated Truss Assembly

Credit: Josh Grindlay

High-Resolution Spectroscopic Imager (HSI)

- Employs grazing incidence multilayer optics and Germanium detectors in the 5–200 keV band to achieve a factor > 100 sensitivity improvement over INTEGRAL technology enabled by Constellation-X development
- o High spatial (20") and spectral resolution mapping of the ⁴⁴Ti line in remnants

Optimized for high sensitivity measurement of the evolution of key prompt lines in Type Ia SNe beyond Virgo

Simulation of a
105 s observation of
Cas A in 44Ti. The
line shifts can be mapped
on fine spatial scales.

Precursor to wide FOV, large area Advanced Compton Telescope (ACT)

Credit: Fiona Harrison

"X-ray Roadmap" to Image a Black Hole

The Constellation X-ray Mission

o Key scientific goals

- Black hole parameters and environment
- Observe formation and evolution of large scale structure in the Universe
- Plasma diagnostics and elemental abundances from stars to clusters

An X-ray Keck Observatory

o Mission parameters

- Effective area: 15,000 cm² at 1 keV
 100 times Chandra and XMM for high resolution spectroscopy
- Spectral resolving power: 3,000 at 6.4 keV
 5 times Astro-E calorimeter
- Band pass: 0.25 to 40 keV
 100 times more sensitive than RXTE at 40 keV

Chandra X-ray Spectroscopy!

X-ray Astronomy becomes X-ray Astrophysics

- o The 0.25 to 10 keV
 X-ray band contains
 the K shell lines for
 all of the abundant
 metals (carbon
 through zinc) and the
 L shell lines of most.
- o X-ray line spectra are rich in density, temperature, and ionization state plasma diagnostics
- o Energy resolution of CCDs not sufficient to exploit these diagnostics
 - gratings and mircocalorimeters can provide required resolution (E/ Δ E) ≥300
 - factor of 100 increase in collecting area over Chandra, XMM, and Astro-E required to reach faint populations

Constellation-X Mission Concept

A multiple satellite approach

- Low-risk approach utilizes a constellation of multiple identical lowcost satellites; each carries a portion of the total effective area
- Simultaneous viewing and high efficiency facilitated by using libration point orbit

Reference configuration

- Four satellites, launched in 2008–2009 two at a time on Atlas V or Delta IV
- Extendible optical bench achieves a focal length of 10 m on-orbit
- Modular design allows parallel development and use of low cost standard bus architecture and components

Technology development

- Lightweight, high throughput X-ray optics
- Calorimeters with 2eV resolution
- Long-lived 2-6K cryo-coolers
- Hard X-ray optics and detector
- CCD and Gratings

X-ray Astrophysics with the Constellation X-ray Mission

The Constellation-X energy band contains the K-line transitions of 25 elements

The sensitivity of Constellation-X will allow abundance, measurements and plasma diagnostics in:

- Intergalactic medium
- Intracluster medium
- Halos of elliptical galaxies
- Starburst galaxies
- Supernova remnants
- Interstellar medium
- Stellar coronae
- Young and pre-main sequence stars
- X-ray irradiated accretion flows

Temperature, Density, and Velocity Diagnostics

The spectral resolution of Constellation-X is tuned to study the He-like density sensitive transitions of Carbon through Zinc

Direct determination of

- Densities from 10⁸ to 10¹⁴ cm⁻³
- Temperature from 1-100 million degrees.

Velocity diagnostics at Fe K line:

- Line width gives a bulk velocity of 100 km/s
- Line energy gives an absolute velocity determination to 10 km/s

Simultaneous determination of the continuum parameters

- Crucial for abundance determinations
- Identify non-thermal components

Super Massive Black Holes at High Redshift

Constellation-X grating, calorimeter, and HXT simulation of a quasar at z = 3.2.

A 100 ks grating simulation of a starbursting Seyfert galaxy at z = 1.

- o Study faint AGN populations
- o Understand the role black holes play in galaxy evolution
- o Examine the starburst-AGN connection

Indirect Imaging of Black Holes Using Spectroscopic Deconvolution

- o ASCA has discovered relativistically broadened iron K-a lines that come from close to the event horizon
- This line provides a unique probe of the inner sanctum near black holes, observing the effects of GR in the strong gravity limit
- o Much larger collecting area and improved energy resolution required to exploit this diagnostic
 - Constellation-X is designed for this

FLARE ON AXIS at h=10

Constellation-X Relativistic Iron K Line Diagnostic

- o Constellation-X will determine black hole mass and spin using iron K-a lines
 - Spin from the line profiles
 - Mass from the time-linked intensity changes for line and continuum emission
 - Reconstruct via deconvolution of the line profile "images" of inner disk

Generation-X:

A Future Ultra-Large Aperture X-ray Telescope

The Universe at redshift >5

- o The formation of the first black holes
 - Black hole mass ~ 1 million solar masses?
- o The first Starburst Galaxies
 - Winds and outflows as galaxy forms

Need to reach $\sim 10^{41}$ erg/s at z = 5

Spectroscopy 100 times fainter than Constellation-X

Equivalent of 30 m diameter, 300 m focal length optic

X-ray Optics Challenge

- o X-ray optics operate at grazing incidence
 - 300-700 more telescope surface area for a given aperture
 - Precisely figured hyperboloid/paraboloid surfaces
 - Trade-off between collecting area and precision
- o State of the art is defined by Chandra
 - -1 arc sec resolution is ~ 100 times over diffraction limit
 - Very expensive and heavy
 - Grasp is equivalent to a 30 cm diameter
 - Polished surface area equal to a 5 m optical telescope!
- o Constellation-X will give 100 times increase in collecting area
 - Replicated shells or segments 0.5 kg/m² areal density
 - -5-15 arc second optics
 - Grasp is equivalent to a 2 m optical telescope
 - Polished surface area equals a 35 m optical telescope!

Need a new approach for improved angular resolution!

X-ray Interferometer Implementation Approaches

Two possible approaches to produce X-ray interference fringes

Fizeau: Overlapping two focused beams

- + Relatively compact system
- Require diffraction limited optics
- Produces nm fringes, magnifier required

Michelson: Use large area flats to combine beams and create fringes

- + Flats are much easier to manufacture
- + Fringe spacing can be much bigger
- Very large (1000 km) separation between combiner and detector

Beam Combiner

- o Use 1/200 grazing incidence flats to steer two beams together
- o Beats will occur, even if not focused
- o Fringe is spacing function of beam crossing angle

Credit: Webster Cash

Wavefront Interference

Two Plane Wavefronts Cross

Fringes at 1.25 keV!

Test made at MSFC Stray Light Facility

This lab demonstration system is scalable to an on-orbit telescope!

Credit: Webster Cash and Marshall Joy

Simultaneous Baseline Observatory Design

- o Multiple Spacings and Rotation Angles Needed Simultaneously to Sample UV Plan
- o 32 flats $(300 \times 10 \text{ cm})$ held in phase
- o Total Area ~1000-10000 cm²

Resolution @ 1 nm (1.2 keV)

Arc sec
3×10^{-4}
3×10^{-7}
3×10^{-10}
3×10^{-13}

Image Quality VS. S/N Per Baseline

$$S/N = 0.6$$

 $A_{eff}T = 3 \cdot 10^5$

$$S/N = 6$$

$$A_{eff}T = 3 \cdot 10^7$$

$$F_x = 3 \cdot 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ keV}^{-1}$$

$$S/N = 2$$

 $A_{eff}T = 3 \cdot 10^{6}$

$$S/N = 20$$

 $A_{eff}T = 3 \cdot 10^{8}$

Credit: Chris Martin

Spectroscopic Imaging of a Kerr Black Hole

Image Quality VS. Number of Baselines

Credit: Chris Martin

Tolerances

- o At grazing incidence the tolerences required are reduced by ~50
- o Tightest Tolerance is Separation of Entrance Apertures
 - d = $\lambda/20\theta$ for tenth fringe stability
 - At 1keV and 2deg, d=1.7nm
 - At 6keV and 0.5deg, d=1.1nm
- This level of stability is similar to those required for optical interferometry
 - Good synergy with technology being developed for origins
- Another advantage over opitcal is that X-ray detectors have intrinsic energy resolution

Tolerances for an X-ray Interferometer

Assume 1nm (10Å) Radiation, 2 degree graze

Resolution Arcseconds	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷
Baseline (m)	1	10	100	1000
Mirror Size (cm)	3 x 100	3 × 100	3 × 100	3 × 100
Position Stability (nm)	20	20	20	20
Angular Stability (arcsec)	10 ⁻³	10 ⁻³	10 ⁻³	10 ⁻³
Figure	λ/100	λ/200	λ/200	λ/200
Polish (Å rms)	20	20	20	20
Angular Knowledge (as)	3×10^{-5}	3×10^{-6}	3×10^{-7}	3×10^{-8}
Position Knowledge (nm)	2	2	2	2
Field of View (Pixels)	20 × 20	20×20	1000 × 1000	1000 × 1000
E/ΔE Detector	20	20	1000	1000

Pathfinder

MAXIM

Notes:

- o Angular stability is for individual mirrors relative to target direction.
- o Only the Angular Knowledge requirement grows tighter with baseline, but this is achieved by a (fixed) 2nm relative position knowledge over a longer baseline.
- o Absolute positioning remains constant as interferometer grows but does not get tighter!

Tie X-ray Interferometer to Optical Guide Interferometer

Optical interferometers tied to array of X-ray collectors with laser truss

- Long baselines (>100m)
 require multiple spacecraft
 flying in formation with 20
 nano-meter stability and 2
 nano-meter knowledge

 Similar problem for the
 planet finder
- o Aspect from optical interferometer
 - 1 ms with a 40-50 m baseline as star/QSO tracker
 - Based on SpaceInterferometry Mission(SIM)

Credits: Mike Shao

We need an Intermediate Step: MAXIM Pathfinder

MAXIM pathfinder will:

Two formation-flying spacecraft

- o Prove X-ray interferometry in space
- o 100 milli-arc sec (1-2 m baseline)
- o Image
 - Coronae of nearby stars
 - Supernovae in M31
 - Jets in SS433
 - AGN broad line region
- o Candidate mission in SEU midterm roadmap
 - Flight around 2015?
- o Pathfinder for full up MAXIM to come 5-10 years later with 100 m to 1 km baseline.

Prospects for X-ray Interferometry

- o X-ray interferometry has radical scientific potential and while technologically challenging, is feasible
- o Tolerances and metrology are comparable to those needed for SIM
- o The laboratory Proof of Concept exists today

Next Steps:

- Chandra and Constellation-X to find best targets and optimize MAXIM parameters (baseline, area)
- Program of precision X-ray optics development $\lambda/200$
- Formation flying and precision metrology
- Pathfinder X-ray interferometry mission with 100 μas by 2015
- MAXIM 0.1-1.0 μas by 2020-2025

Large Scale Structure (LSS) X-rays are Central to the Problem

As the Universe evolved, structure appeared: stars, galaxies, & clusters of galaxies

- O Clusters of galaxies are the largest and most massive virialized objects in the Universe!
 - Hot X-ray emitting gas makes up the majority of the baryons
 - Most of the visible "metals" are in the same gas
 - Dark matter holds it together
 - X-rays trace the baryons and the dark matter
- O The epoch of formation of these structures depends on the cosmological parameters and the nature of dark matter
 - In a cold dark matter models clusters come after galaxies, in hot dark matter it is vice versa
 - Hot dark matter ruled out by the observations

Where are the Missing Baryons?

- o Fukugita, Hogan, & Peebles made a local Universe Cosmic Baryon Budget
 - They could account for only 20% of the baryons in known objects
 - Where is the local Lyman-α forest?
- Detailed theoretical work on the formation of large scale structure (e.g., Cen and Ostriker 1999) show that
 - Most of the "unseen" baryons should lie in a dilute hot million degree K gas
 - Best seen via X-ray emission and absorption
- o Most of the matter in the Universe is hot
 - Only visible as the hot X-ray emitting gas in groups and clusters of galaxies.

Formation of Structure

o Using a cosmological hydrodynamic code we can follow the evolution of the Universe (Ω_0 = 0.37, Ω_b = 0.05, Λ = 0.63, h = 0.7)

Density

32 megaparsecs

X-ray Luminosity

Temperature

Credit: Cen & Ostriker

8 megaparsecs deep

Credit: Bode, Cen, Ostriker, and Xu

The Universe as a whole gets hotter as it evolves, from gravitational and shock heating of the collapsing gas - it lights up in X-rays!

When Were Clusters of Galaxies Formed and How Do They Evolve?

Constellation-X observations of clusters and groups of galaxies essential for understanding structure, evolution, and mass content of the Universe

- o Observe epoch of cluster and group formation and determine changes in abundances, luminosity, temperature, and size *vs* redshift
- o Absolute distances to arbitrary redshifts using S-Z effect
- o Map velocity profiles, probing dynamics of mergers and measuring distributions of luminous and dark matter

Constellation-X Observations of High z Clusters

A simulated 50,000 s Constellation-X exposure of a cluster at z=0.8:

- accuracy for Si, S, and Fe and 20%
 - for Ne and Mg
- The Sunyaev-Zeldovich Effect provides distances independent of cosmic distance ladder
 - Constellation-X will provide necessary temperatures to combine with Chandra and CMB measurements
 - Constraints on "Λ"

Where Are the "Missing Baryons" in the Local Universe?

- via high resolution spectroscopy revealing absorption lines of IGM metals against the spectrum of background quasars
- o Constellation-X will be able to probe up to 70% of the hot gas in groups and clusters of galaxies at low redshifts through OVIII resonant absorption

The Universe is Hot!

o X-ray Astrophysics is central to understanding the Structure and Evolution of the Universe

- In the current epoch, most of the Universe is hot
- Most of the metals are in the hot phase
- X-ray emission is the least biased way to trace the large scale structure: it traces the potential well of the dark matter

o Constellation-X will determine

- When groups & clusters of galaxies formed and their evolution
- Search for and determine the nature of the IGM for z < 1
- History of chemical enrichment in the Universe
- Distance scale of the Universe (combined with S-Z & CMB)

Conclusions

- o X-ray interferometry to image a black hole is feasible
 - But is well beyond current capabilities and requires major technology program
- o Ground work is needed to select the best targets and optimize the MAXIM parameters (area, baseline, energy band)
- The path to image a black hole will enable technology that will provide answers to many other interesting science problems

NASA X-ray and Gamma Ray Future Missions

Near Term (in strategic plan for new starts 1999-2007)

- o Swift: 2003
 - Panchromatic, rapid response Gamma Ray Burst mission
- o GLAST: 2005
 - GeV Gamma Ray Survey mission
- o Constellation-X: 2008-2010
 - Large area spectroscopy mission

Mid Term (candidates for new starts 2008-2012)

- o MAXIM Pathfinder
 - First X-ray Interferometry Mission (100 micro arc sec)
- o HSIM
 - Nuclear Line studies out to Virgo cluster using hard x-ray optics
- o EXIST
 - Hard X-ray Survey

NASA X-ray and Gamma Ray Future Missions

Vision Missions (launch > 2020)

- o MAXIM
 - Black Hole Imager (Micro arc sec Interferometer)
- o ACT
 - Very Large Area Compton Telescope for Nuclear Line Science
- o **Generation-X**
 - Early Universe Observer (100 times Constellation-X)